\(\int \frac {x (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{d+e x} \, dx\) [448]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 295 \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\frac {\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac {\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}} \]

[Out]

-1/24*(3*a/c/d+5*d/e^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c/
d/e/(e*x+d)-1/128*(-a*e^2+c*d^2)^3*(3*a*e^2+5*c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/
2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(5/2)/d^(5/2)/e^(7/2)+1/64*(-a*e^2+c*d^2)*(3*a*e^2+5*c*d^2)*(2*c
*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/e^3

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {808, 678, 626, 635, 212} \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=-\frac {\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}}+\frac {\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 c^2 d^2 e^3}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} \]

[In]

Int[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

((c*d^2 - a*e^2)*(5*c*d^2 + 3*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/
(64*c^2*d^2*e^3) - (((3*a)/(c*d) + (5*d)/e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/24 + (a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(4*c*d*e*(d + e*x)) - ((c*d^2 - a*e^2)^3*(5*c*d^2 + 3*a*e^2)*ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(128*c^(5/2)*d^
(5/2)*e^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 808

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}+\frac {1}{8} \left (-\frac {5 d}{e}-\frac {3 a e}{c d}\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx \\ & = -\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}+\frac {\left (\left (\frac {5 d}{e}+\frac {3 a e}{c d}\right ) \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \int \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{16 e^2} \\ & = \frac {\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac {\left (\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 c^2 d^2 e^3} \\ & = \frac {\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac {\left (\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{64 c^2 d^2 e^3} \\ & = \frac {\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac {1}{24} \left (\frac {3 a}{c d}+\frac {5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac {\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 236, normalized size of antiderivative = 0.80 \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (-9 a^3 e^6+3 a^2 c d e^4 (3 d+2 e x)+a c^2 d^2 e^2 \left (-31 d^2+20 d e x+72 e^2 x^2\right )+c^3 d^3 \left (15 d^3-10 d^2 e x+8 d e^2 x^2+48 e^3 x^3\right )\right )-\frac {3 \left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{192 c^{5/2} d^{5/2} e^{7/2}} \]

[In]

Integrate[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-9*a^3*e^6 + 3*a^2*c*d*e^4*(3*d + 2*e*x) + a*c^2*d^2*
e^2*(-31*d^2 + 20*d*e*x + 72*e^2*x^2) + c^3*d^3*(15*d^3 - 10*d^2*e*x + 8*d*e^2*x^2 + 48*e^3*x^3)) - (3*(c*d^2
- a*e^2)^3*(5*c*d^2 + 3*a*e^2)*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(Sqrt[a*e
 + c*d*x]*Sqrt[d + e*x])))/(192*c^(5/2)*d^(5/2)*e^(7/2))

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 483, normalized size of antiderivative = 1.64

method result size
default \(\frac {\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}{8 c d e}+\frac {3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \left (\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{16 c d e}}{e}-\frac {d \left (\frac {\left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{3}+\frac {\left (e^{2} a -c \,d^{2}\right ) \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 c d e}-\frac {\left (e^{2} a -c \,d^{2}\right )^{2} \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 c d e \sqrt {c d e}}\right )}{2}\right )}{e^{2}}\) \(483\)

[In]

int(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^
2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e
^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*
d*e)^(1/2)))-d/e^2*(1/3*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)+1/2*(a*e^2-c*d^2)*(1/4*(2*c*d*e*(x+d/e)+
e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*e^2*a-1/2*c
*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 676, normalized size of antiderivative = 2.29 \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\left [-\frac {3 \, {\left (5 \, c^{4} d^{8} - 12 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} - 3 \, a^{4} e^{8}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (48 \, c^{4} d^{4} e^{4} x^{3} + 15 \, c^{4} d^{7} e - 31 \, a c^{3} d^{5} e^{3} + 9 \, a^{2} c^{2} d^{3} e^{5} - 9 \, a^{3} c d e^{7} + 8 \, {\left (c^{4} d^{5} e^{3} + 9 \, a c^{3} d^{3} e^{5}\right )} x^{2} - 2 \, {\left (5 \, c^{4} d^{6} e^{2} - 10 \, a c^{3} d^{4} e^{4} - 3 \, a^{2} c^{2} d^{2} e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{768 \, c^{3} d^{3} e^{4}}, \frac {3 \, {\left (5 \, c^{4} d^{8} - 12 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} - 3 \, a^{4} e^{8}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (48 \, c^{4} d^{4} e^{4} x^{3} + 15 \, c^{4} d^{7} e - 31 \, a c^{3} d^{5} e^{3} + 9 \, a^{2} c^{2} d^{3} e^{5} - 9 \, a^{3} c d e^{7} + 8 \, {\left (c^{4} d^{5} e^{3} + 9 \, a c^{3} d^{3} e^{5}\right )} x^{2} - 2 \, {\left (5 \, c^{4} d^{6} e^{2} - 10 \, a c^{3} d^{4} e^{4} - 3 \, a^{2} c^{2} d^{2} e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{384 \, c^{3} d^{3} e^{4}}\right ] \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/768*(3*(5*c^4*d^8 - 12*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(c*d*e)*log(8*
c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x
 + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(48*c^4*d^4*e^4*x^3 + 15*c^4*d^7*e - 31*a*c^3
*d^5*e^3 + 9*a^2*c^2*d^3*e^5 - 9*a^3*c*d*e^7 + 8*(c^4*d^5*e^3 + 9*a*c^3*d^3*e^5)*x^2 - 2*(5*c^4*d^6*e^2 - 10*a
*c^3*d^4*e^4 - 3*a^2*c^2*d^2*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4), 1/384*(3*(5*c
^4*d^8 - 12*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (
c^2*d^3*e + a*c*d*e^3)*x)) + 2*(48*c^4*d^4*e^4*x^3 + 15*c^4*d^7*e - 31*a*c^3*d^5*e^3 + 9*a^2*c^2*d^3*e^5 - 9*a
^3*c*d*e^7 + 8*(c^4*d^5*e^3 + 9*a*c^3*d^3*e^5)*x^2 - 2*(5*c^4*d^6*e^2 - 10*a*c^3*d^4*e^4 - 3*a^2*c^2*d^2*e^6)*
x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4)]

Sympy [A] (verification not implemented)

Time = 10.98 (sec) , antiderivative size = 1093, normalized size of antiderivative = 3.71 \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\text {Too large to display} \]

[In]

integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d),x)

[Out]

a*e*Piecewise(((-a*(a*e**2/6 + c*d**2/6)/(2*c) - (a*e**2 + c*d**2)*(a*d*e/3 - (a*e**2/6 + c*d**2/6)*(3*a*e**2/
2 + 3*c*d**2/2)/(2*c*d*e))/(2*c*d*e))*Piecewise((log(a*e**2 + c*d**2 + 2*c*d*e*x + 2*sqrt(c*d*e)*sqrt(a*d*e +
c*d*e*x**2 + x*(a*e**2 + c*d**2)))/sqrt(c*d*e), Ne(a*d*e - (a*e**2 + c*d**2)**2/(4*c*d*e), 0)), ((x - (-a*e**2
 - c*d**2)/(2*c*d*e))*log(x - (-a*e**2 - c*d**2)/(2*c*d*e))/sqrt(c*d*e*(x - (-a*e**2 - c*d**2)/(2*c*d*e))**2),
 True)) + (x**2/3 + x*(a*e**2/6 + c*d**2/6)/(2*c*d*e) + (a*d*e/3 - (a*e**2/6 + c*d**2/6)*(3*a*e**2/2 + 3*c*d**
2/2)/(2*c*d*e))/(c*d*e))*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)), Ne(c*d*e, 0)), (2*(-a*d*e*(a*d*e + x*
(a*e**2 + c*d**2))**(3/2)/3 + (a*d*e + x*(a*e**2 + c*d**2))**(5/2)/5)/(a*e**2 + c*d**2)**2, Ne(a*e**2 + c*d**2
, 0)), (x**2*sqrt(a*d*e)/2, True)) + c*d*Piecewise(((-a*(a*d*e/4 - (a*e**2/8 + c*d**2/8)*(5*a*e**2/2 + 5*c*d**
2/2)/(3*c*d*e))/(2*c) - (a*e**2 + c*d**2)*(-2*a*(a*e**2/8 + c*d**2/8)/(3*c) - (3*a*e**2/2 + 3*c*d**2/2)*(a*d*e
/4 - (a*e**2/8 + c*d**2/8)*(5*a*e**2/2 + 5*c*d**2/2)/(3*c*d*e))/(2*c*d*e))/(2*c*d*e))*Piecewise((log(a*e**2 +
c*d**2 + 2*c*d*e*x + 2*sqrt(c*d*e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)))/sqrt(c*d*e), Ne(a*d*e - (a*
e**2 + c*d**2)**2/(4*c*d*e), 0)), ((x - (-a*e**2 - c*d**2)/(2*c*d*e))*log(x - (-a*e**2 - c*d**2)/(2*c*d*e))/sq
rt(c*d*e*(x - (-a*e**2 - c*d**2)/(2*c*d*e))**2), True)) + sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))*(x**3
/4 + x**2*(a*e**2/8 + c*d**2/8)/(3*c*d*e) + x*(a*d*e/4 - (a*e**2/8 + c*d**2/8)*(5*a*e**2/2 + 5*c*d**2/2)/(3*c*
d*e))/(2*c*d*e) + (-2*a*(a*e**2/8 + c*d**2/8)/(3*c) - (3*a*e**2/2 + 3*c*d**2/2)*(a*d*e/4 - (a*e**2/8 + c*d**2/
8)*(5*a*e**2/2 + 5*c*d**2/2)/(3*c*d*e))/(2*c*d*e))/(c*d*e)), Ne(c*d*e, 0)), (2*(a**2*d**2*e**2*(a*d*e + x*(a*e
**2 + c*d**2))**(3/2)/3 - 2*a*d*e*(a*d*e + x*(a*e**2 + c*d**2))**(5/2)/5 + (a*d*e + x*(a*e**2 + c*d**2))**(7/2
)/7)/(a*e**2 + c*d**2)**3, Ne(a*e**2 + c*d**2, 0)), (x**3*sqrt(a*d*e)/3, True))

Maxima [F(-2)]

Exception generated. \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.05 \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\frac {1}{192} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, {\left (4 \, {\left (6 \, c d x + \frac {c^{4} d^{5} e^{2} + 9 \, a c^{3} d^{3} e^{4}}{c^{3} d^{3} e^{3}}\right )} x - \frac {5 \, c^{4} d^{6} e - 10 \, a c^{3} d^{4} e^{3} - 3 \, a^{2} c^{2} d^{2} e^{5}}{c^{3} d^{3} e^{3}}\right )} x + \frac {15 \, c^{4} d^{7} - 31 \, a c^{3} d^{5} e^{2} + 9 \, a^{2} c^{2} d^{3} e^{4} - 9 \, a^{3} c d e^{6}}{c^{3} d^{3} e^{3}}\right )} + \frac {{\left (5 \, c^{4} d^{8} - 12 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} - 3 \, a^{4} e^{8}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{128 \, \sqrt {c d e} c^{2} d^{2} e^{3}} \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

1/192*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*(4*(6*c*d*x + (c^4*d^5*e^2 + 9*a*c^3*d^3*e^4)/(c^3*d^3*e^
3))*x - (5*c^4*d^6*e - 10*a*c^3*d^4*e^3 - 3*a^2*c^2*d^2*e^5)/(c^3*d^3*e^3))*x + (15*c^4*d^7 - 31*a*c^3*d^5*e^2
 + 9*a^2*c^2*d^3*e^4 - 9*a^3*c*d*e^6)/(c^3*d^3*e^3)) + 1/128*(5*c^4*d^8 - 12*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4
 + 4*a^3*c*d^2*e^6 - 3*a^4*e^8)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2
*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^2*d^2*e^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx=\int \frac {x\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{d+e\,x} \,d x \]

[In]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e*x),x)

[Out]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e*x), x)